Cause of the charge radius isotope shift at the N=126 shell gap

نویسنده

  • P. M. Goddard
چکیده

We discuss the mechanism causing the ‘kink’ in the charge radius isotope shift at the N = 126 shell closure. The occupation of the 1i11/2 neutron orbital is the decisive factor for reproducing the experimentally observed kink. We investigate whether this orbital is occupied or not by different Skyrme effective interactions as neutrons are added above the shell closure. Our results demonstrate that several factors can cause an appreciable occupation of the 1i11/2 neutron orbital, including the magnitude of the spinorbit field, and the isoscalar effective mass of the Skyrme interaction. The symmetry energy of the effective interaction has little influence upon its ability to reproduce the kink.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Charge radius isotope shift across the N=126 shell gap.

We revisit the problem of the kink in the charge radius shift of neutron-rich even isotopes near the N=126 shell closure. We show that the ability of a Skyrme force to reproduce the isotope shift is determined by the occupation of the neutron 1i(11/2) orbital beyond N=126 and the corresponding change it causes to deeply-bound protons orbitals with a principal quantum number of 1. Given the obse...

متن کامل

Nuclear charge radii of (21-32)Mg.

Charge radii of all magnesium isotopes in the sd shell have been measured, revealing evolution of the nuclear shape throughout two prominent regions of assumed deformation centered on (24)Mg and (32)Mg. A striking correspondence is found between the nuclear charge radius and the neutron shell structure. The importance of cluster configurations towards N=8 and collectivity near N=20 is discussed...

متن کامل

Quantum Chemical Modeling of N-(2-benzoylphenyl)oxalamate: Geometry Optimization, NMR, FMO, MEP and NBO Analysis Based on DFT Calculations

In the present work, the quantum theoretical calculations of the molecular structure of the (N-(2-benzoylphenyl) oxalamate has been investigated and are evaluated using Density Functional Theory (DFT). The geometry of the title compound was optimized by B3LYP method with 6-311+G(d) basis set. The theoretical 1H and 13C NMR chemical shift (GIAO method) values of the title compound are calculated...

متن کامل

The Dynamic and Vibration Response of Composite Cylindrical Shell Under Thermal Shock and Mild Heat Field

In this article, the vibration and dynamic response of an orthotropic composite cylindrical shell under thermal shock loading and thermal field have been investigated. The problem is that the shell is initially located at a first temperature, and some tension caused by a mild heat field is created, then the surface temperature of the cylinder suddenly increases. The partial derivative equations...

متن کامل

Calculating charge radius for proton with hyper central interacting color potential

An improved M.I.T. bag model with hyper central interaction is used to calculate the charge radius for proton containing u and d quarks. We present a theoretical approach to the internal structure of three-body hyper central interacting quarks in a proton, in which we take proton as a bag. We discuss a few of results obtained using a six-dimension potential, which is attractive for small separa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014